A disaster usually severely harms human health and property. After a disaster, great amount of information of a disaster area is needed urgently. The information not only indicates the severity of the disaster, but also is crucial for an efficient search and rescue process. In order to quickly and accurately collect real time information in a disaster scenario, a mobile platform is developed for an outdoor scenario and a localization and navigation system for responders is introduced for an indoor scenario.
The mobile platform has been integrated to the DIORAMA system. It is built with a 6-wheel robot chassis along with an Arduino microcontroller. Controlled by a mounted Android smartphone, the mobile platform can receive commands from incident commanders and quickly respond to the commands. While patrolling in a disaster area, a constant RFID signal is collected to improve the localization accuracy of victims. Pictures and videos are also captured in order to enhance the situational awareness of rescuers.
The design of the indoor information collection is focused on the responder side. During a disaster scenario, it is hard to track responders’ locations in an indoor environment. In this thesis, an indoor localization and navigation system based on Bluetooth low energy and Android is developed for helping responders report current location and quickly find the right path in the environment. Different localization algorithms are investigated and implemented. A navigation system based on A* is also proposed.
Source: University of Massachusetts
Author: Yang Dongyi