Get Latest CSE Projects in your Email


Rich Intrinsic Image Separation for Multi-View Outdoor Scenes

Intrinsic images aim at separating an image into its reflectance and illumination components to facilitate further analysis or manipulation. This separation is severely ill-posed and the most successful methods rely on user indications or precise geometry to resolve the ambiguities inherent to this problem.

In this paper we propose a method to estimate intrinsic images from multiple views of an outdoor scene without the need for precise geometry or involved user intervention. We use multiview stereo to automatically reconstruct a 3D point cloud of the scene.

Although this point cloud is sparse and incomplete, we show that it provides the necessary information to compute plausible sky and indirect illumination at each 3D point.

We then introduce an optimization method to estimate sun visibility over the point cloud. This algorithm compensates for the lack of accurate geometry and allows the extraction of precise shadows in the final image. We finally propagate the information computed over the sparse point cloud to every pixel in the photograph using image-guided propagation.

Our propagation not only separates reflectance from illumination, but also decomposes the illumination into a sun, sky and indirect layer. This rich decomposition allows novel image manipulations as demonstrated by our results.
Source: HAL
Author: Pierre-Yves Laffont | Adrien Bousseau | George Drettakis

Download Project

>> 100+ Projects on Image Processing

Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views

For Free CSE Project Downloads:

Enter your email address:
( Its Free 100% )


Leave a Comment

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>